10:45 pm - Pazar Aralık 4, 2016

Fonksiyonlar Konu Anlatımı ve Ders Notları

Cumartesi, 29 Ekim 2016, 10:00 | Güncel | 34 Yorum

FONKSİYON

A. TANIM

A ¹ Æ ve B ¹ Æ olmak üzere, A dan B ye bir b bağıntısı verilmiş olsun.
A nın her elemanı B nin elemanlarıyla en az bir kez ve en çok bir kez eşleniyorsa bu bağıntıya fonksiyon denir.

“x Î A ve y Î B olmak üzere, A dan B ye bir f fonksiyonu
f : A ® B ya da x ® f(x) = y biçiminde gösterilir. A ya fonksiyonun tanım kümesi, B ye de değer kümesi denir.

Yukarıda A dan B ye tanımlanan f fonksiyonu

f = {(a, 1), (b, 2), (c, 3), (d, 2)}

biçiminde de gösterilir.

Ü Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon olmayabilir.
Ü Görüntü kümesi değer kümesinin alt kümesidir.
Ü s(A) = m ve s(B) = n olmak üzere,

i) A dan B ye nm tane fonksiyon tanımlanabilir.

ii) B den A ya mn tane fonksiyon tanımlanabilir.

iii) A dan B ye tanımlanabilen fonksiyon olmayan bağıntıların sayısı 2m × n – nm dir.

Ü Grafiği verilen bir bağıntının fonksiyon olup olmadığını anlamak için, y eksenine paralel doğrular çizilir. Bu doğrular fonksiyonun belirttiği eğride en az bir ve en çok bir noktayı kesiyorsa verilen bağıntı x ten y ye bir fonksiyondur.

B. FONKSİYONLARDA İŞLEMLER

A Ç B ¹ Æ olmak üzere,

fonksiyonları tanımlansın.

  1. (f + g) : A Ç B ® , (f + g)(x) = f(x) + g(x)
  2. (f – g) : A Ç B ® , (f – g)(x) = f(x) – g(x)
  3. (f × g) : A Ç B ® , (f × g)(x) = f(x) × g(x)
  4. “x Î A Ç B için, g(x) ¹ 0 olmak üzere,

  1. c Î olmak üzere,

    (c × f) : A ® , (c × f)(x) = c × f(x) tir.

C. FONKSİYON ÇEŞİTLERİ

1. Bire Bir Fonksiyon

Bir fonksiyonda farklı elemanların görüntüleri de farklıysa fonksiyon bire birdir..

BBuna göre, bire bir fonksiyonda,

“x1, x2 Î A için, x1 ¹ x2 iken f(x1) ¹ f(x2) olur.

Diğer bir ifadeyle,

“x1, x2 Î A için, f(x1) = f(x2) iken

x1 = x2 ise, f  fonksiyonu bire birdir.

Ü s(A) = m ve s(B) = n (n ³ m) olmak üzere,

A dan B ye tanımlanabilecek bire bir fonksiyonların sayısı,

2. Örten Fonksiyon

Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.

Ü f : A ® B

f(A) = B ise, f örtendir.

Ü s(A) = m olmak üzere, A dan A ya tanımlanabilen bire bir örten fonksiyonların sayısı,

m! = m × (m – 1) × (m – 2) ×× 3 × 2 × 1 dir.

3. İçine Fonksiyon

Örten olmayan fonksiyona içine fonksiyon denir.

Ü İçine fonksiyonun değer kümesinde eşlenmemiş eleman vardır.
Ü s(A) = m olmak üzere, A dan A ya tanımlanabilen içine fonksiyonların sayısı mm – m! dir.

4. Birim (Etkisiz) Fonksiyon

Her elemanı kendisine eşleyen fonksiyona birim fonksiyon denir.

ise, f birim (etkisiz) fonksiyondur.

Ü Birim fonksiyon genellikle I ile gösterilir.

5. Sabit Fonksiyon

Tanım kümesindeki bütün elemanları değer küme-sindeki bir elemana eşleyen fonksiyona sabit fonksiyon denir.

Ü “x Î A ve c Î B için,

f : A ® B

f(x) = c

ise, f sabit fonksiyondur.

Ü s(A) = m, s(B) = n olmak üzere,

A dan B ye n tane sabit fonksiyon tanımlanabilir.

6. Çift ve Tek Fonksiyon

f(–x) = f(x) ise, f fonksiyonu çift fonksiyondur.

f(–x) = –f(x) ise, f fonksiyonu tek fonksiyondur.

Ü Çift fonksiyonların grafikleri Oy eksenine göre simetriktir.
Ü Tek fonksiyonların grafikleri orijine göre simetriktir.

D. EŞİT FONKSİYON

f : A ® B

g : A ® B

Her x Î A için f(x) = g(x) ise, f fonksiyonu g fonksiyonuna eşittir.

E. PERMÜTASYON FONKSİYON

f : A ® A

olmak üzere, f fonksiyonu bire bir ve örten ise, f fonksiyonuna permütasyon fonksiyon denir.

A = {a, b, c} olmak üzere, f : A ® A

f = {(a, b), (b, c), (c, a)}

fonksiyonu permütasyon fonksiyon olup

biçiminde gösterilir.

F. TERS FONKSİYON

f : A ® B, f = {(x, y)|x Î A, y Î B} bire bir ve örten fonksiyon olmak üzere,

f–1 : B ® A, f–1 = {(y, x)|(x, y) Î f} fonksiyonuna f nin ters fonksiyonu denir.

(x, y) Î f ise, (y, x) Î f–1 olduğu için,

y = f(x) ise, x = f–1(y) dir.

Ayrıca, (f–1)–1 = f dir.

(f–1)–1 = f dir. Ancak, (f–1(x))–1 ¹ f(x) tir.
f fonksiyonu bire bir ve örten değilse, f–1 fonksiyon değildir.
f : A ® B ise, f–1 : B ® A olduğu için, f nin tanım kümesi, f–1 in değer kümesidir. f nin değer kümesi de, f–1 in tanım kümesidir.
f(a) = b ise, f–1(b) = a dır.

f–1(b) = a ise, f(a) = b dir.

Ü y = f(x) fonksiyonunun grafiği ile y = f–1(x) in grafiği
y = x doğrusuna göre birbirinin simetriğidir.

Ü olmak üzere,

Ü olmak üzere,

G. BİLEŞKE FONKSİYON

f : A ® B, g : B ® C fonksiyonları tanımlansın.

f ve g yi kullanarak A kümesinin elemanlarını C kümesinin elemanlarına eşleyen fonksiyona g ile f nin bileşke fonksiyonu denir.

Buna göre,

f : A ® B ve g : B ® C olmak üzere, gof : A ® C fonksiyonuna f ile g nin bileşke fonksiyonu denir ve g bileşke f diye okunur.

Ü (gof)(x) = g[f(x)] tir.
Bileşke işleminin değişme özeliği yoktur.

Bu durumda, fog ¹ gof dir.

Bazı fonksiyonlar için fog = gof olabilir. Ancak bu “fonksiyonlarda değişme özeliği yoktur.” gerçeğini değiştirmez.

Ü Fonksiyonlarda bileşke işleminin birleşme özeliği vardır.

Bu durumda (fog)oh = fo(goh) = fogoh olur.

Ü I birim fonksiyon olmak üzere,

foI = Iof = f ve

f–1of = fof–1 = I dır.

Ü f, g ve h fonksiyonları bire bir ve örten olmak üzere,

(fog)–1 = g–1of–1 ve

(fogoh)–1 = h–1og–1of–1 dir.

Ü (fog)(x) = h(x)

ise, f(x) = (hog–1)(x) dir.

ise, g(x) = (f–1oh)(x) tir.

•  f–1 (x) = f(x) tir.

•  (fof) (x) = x

•  (fofof) (x) = f(x)

•  (fofofof) (x) = x

H. FONKSİYONUN GRAFİĞİ

Bir fonksiyonun elemanlarına analitik düzlemde karşılık gelen noktaların kümesine bu fonksiyonun grafiği denir.

f : A ® B, f = {(x, y)|x Î A, y Î B, y = f(x)}

(a, b) Î f

olduğundan

f(a) = b dir.

Ayrıca, f–1(b) = a dır.

Ü

Yukarıdaki y = f(x) fonksiyonunun grafiğine göre,

f(–3) = 3, f(–2) = 1, f(–1) = 2, f(0) = 2, f(1) = 1,

f(2) = 0, f(3) = 2, f(4) = 1, f(5) = 0 dır.

 2017 YGS Soruları ve Yorumlar İçin Tıkla

34 yorum yazılmış, sizde hemen aşağıdan yorum yazabilirsiniz "Fonksiyonlar Konu Anlatımı ve Ders Notları"

  1. zeki diyor ki:

    Anlayamadım biraz detaylı anlatsalar daha iyi anlayacaktım

  2. beyza diyor ki:

    birazda örnek olsaydı daha iyi olurdu…

  3. Tuğçe diyor ki:

    Saolun İnşallah yarın meral beğenir bunu :D

  4. sahin ö zge diyor ki:

    Işime yardımci oldu yapanlar tskler

  5. kübra diyor ki:

    önemli bilgileri yani notları tam olarak alamadım ama yine de işime yaradı sağolun

  6. deniz diyor ki:

    iğrenç bir konu

  7. şengül diyor ki:

    süper çok güzel olmuşşşşşşş

  8. Çisem diyor ki:

    bilgi açısından okuldakilerden daha iyi ve ayrıntılı güzel bence.

  9. kadir diyor ki:

    Son grafiğin pek açıklaması yok ya

  10. kutay diyor ki:

    gerçekten emeğinize sağlık çok işime yaradı :D

  11. Hüseyin Furkan diyor ki:

    çook teşekkürler ödevim için tam aradığım şey bu

  12. ,elvan dalton diyor ki:

    Çok teşekkür ederim matematik dönem ödevimi sayenizde yaptım Allah sizden razı olsun :)

  13. ibrahim diyor ki:

    güzel olmuş dönem odevimi yağtım :)

  14. tugay diyor ki:

    çok saolun

  15. sezer polat diyor ki:

    site çok güzel fakat aradığım şey tanım .iyi günler

  16. mahir diyor ki:

    çok saolun çok güzel olmuş

  17. mahir diyor ki:

    çok saolun

  18. şekilli fatih diyor ki:

    türkiyede bilgi anlayışını tamamen değiştiren siz değerli arkadaşlarımıza teşekkür ederiz
    sağlık sen öğrencileri

  19. hümeyra diyor ki:

    emeği geçen herkese çok teşekkürler :)

  20. hilal diyor ki:

    işime yaradı tesekkürler :D

  21. tugce diyor ki:

    Bence cok guzel olmus cok anlasilir olmus tesekkurler :-)

  22. FURKAN DAYI diyor ki:

    İyi olmuş ama bir de video olsa daha iyi olacak

  23. SEMA diyor ki:

    ÇOK GÜZEL TAM SNAVDA SORULACAK SORULAR

  24. oguz diyor ki:

    hiç birşey anlamadım çok karışık

  25. bedirhan diyor ki:

    beyler benim anlamadıgım konu a1 e gidiyor b2 ye c3 e d2 ye neden gidiyor onu çözmüş degilim biraz yardım :/

  26. Gülşin diyor ki:

    Emeginize saglik cok guzel olmus

  27. ahmet Gümüş diyor ki:

    saolun çok işime yaradı :))

  28. emre diyor ki:

    çok işime yaradı

  29. ceren diyor ki:

    evett,,,

  30. ceren diyor ki:

    güsell .,,,

Yorum Yazın

Yararlı Bağlantılar