7:05 am - Perşembe Aralık 8, 2016

Bölme ve Bölünebilme Konu Anlatımı ve Ders Notları

Cumartesi, 29 Ekim 2016, 10:00 | Güncel | 2 Yorum

BÖLME ve BÖLÜNEBİLME

A. BÖLME

A, B, C, K birer doğal sayı ve B ¹ 0 olmak üzere,

bölme işleminde,

  • A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir.
  • A = B × C + K dir.
  • Kalan, bölenden küçüktür. (K < B)
  • Kalan, bölümden (C den) küçük ise, bölen (B) ile bölümün (C) yeri değiştirilebilir. Bu durumda A ve K değişmez.
  • K = 0 ise, A sayısı B ile tam bölünebilir.

B. BÖLÜNEBİLME KURALLARI

1. 2 İle Bölünebilme

Birler basamağındaki rakamı çift olan sayılar 2 ile tam bölünür.

Tek sayıların 2 ile bölümünden kalan 1 dir.

2. 3 İle Bölünebilme

Rakamlarının sayısal değerleri toplamı 3 ün katı olan sayılar 3 ile tam bölünür.

Bir sayının 3 ile bölümünden kalan, rakamlarının toplamının 3 ile bölümünden kalana eşittir.

3. 4 İle Bölünebilme

Bir sayının onlar basamağındaki rakam ile birler basamağındaki rakamın (son iki basamak) belirttiği sayı, 4 ün katı olan sayılar 4 ile tam bölünür.

… abc sayısının 4 ile bölümünden kalan bc nin (son iki basamak) 4 ile bölümünden kalana eşittir.

  • … abc sayısının 4 ile bölümünden kalan

c + 2 . b nin 4 ile bölümünden kalana eşittir.

4. 5 İle Bölünebilme

Birler basamağındaki rakam 0 veya 5 olan sayılar 5 ile tam bölünür.

Bir sayının 5 ile bölümünden kalan, o sayının birler basamağındaki rakamın 5 ile bölümünden kalana eşittir.

5. 7 İle Bölünebilme

(n + 1) basamaklı anan-1 … a4a3a2a1a0 sayısının 7 ile tam bölünebilmesi için,

olmak üzere,

(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) +…– … = 7k

olmalıdır.

Ü Birler basamağı a0, onlar basamağı a1, yüzler basamağı a2, … olan sayının (…a5 a4 a3 a2 a1 a0 sayısının) 7 ile bölümünden kalan

(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) +…– … …

işleminin sonucunun 7 ile bölümünden kalana eşittir.

Sekiz basamaklı ABCDEFGH sayısının 7 ile bölümünden kalan,

(H + 3 × G + 2 × F) – (E + 3 × D + 2 × C) + (B + 3 × A) işleminin sonucunun 7 ile bölümünden kalandır.

6. 8 İle Bölünebilme

Yüzler basamağındaki, onlar basamağındaki ve birler basamağındaki rakamların (son üç rakamın) belirttiği sayı 8 in katı olan sayılar 8 ile tam bölünür.

3000, 3432, 65104 sayıları 8 ile tam bölünür.

Ü Birler basamağı c, onlar basamağı b, yüzler basamağı a, … olan sayının (… abc sayısının) 8 ile bölümünden kalan c + 2 × b + 4 × a toplamının 8 ile bölümünden kalana eşittir.

7. 9 İle Bölünebilme

Rakamlarının toplamı 9 un katı olan sayılar 9 ile tam bölünür.

Bir sayının 9 ile bölümünden kalan, o sayının rakamlarının toplamının 9 ile bölümünden kalana eşittir.

8. 10 İle Bölünebilme

Birler basamağındaki rakamı 0 (sıfır) olan sayılar 10 ile tam bölünebilir. Bir sayının birler basamağındaki rakam o sayının 10 ile bölümünden kalandır.

9. 11 İle Bölünebilme

(n + 1) basamaklı anan–1 … a4a3a2a1a0 sayısının 11 ile tam bölünebilmesi için

(a0 + a2 + a4 + …) – (a1 + a3 + a5 + …)… = 11 . k

ve olmalıdır.

Ü (n + 1) basamaklı anan–1 … a4a3a2a1a0 sayısının 11 ile bölümünden kalan

(a0 + a2 + a4 + …) – (a1 + a3 + a5 + …)… işleminin sonucunun 11 ile bölümünden kalana eşittir.

Aralarında asal iki sayıya bölünebilen bir sayı, bu iki sayının çarpımına da tam bölünür.

  • 2 ve 3 ile tam bölünen sayılar 2 × 3 = 6 ile de tam bölünür.
  • 3 ve 4 ile tam bölünen sayılar 3 × 4 = 12 ile de tam bölünür.
  • 4 ve 6 ile tam bölünen sayılar 4 × 6 = 24 ile tam bölünemeyebilir. Çünkü 4 ile 6 aralarında asal değildir.

C. BÖLEN KALAN İLİŞKİSİ

A, B, C, D, E, K1, K2 uygun koşullarda birer doğal sayı olmak üzere,

A nın C ile bölümünden kalan K1 ve

B nin C ile bölümünden kalan K2 olsun.

Buna göre,

  • A × B nin C ile bölümünden kalan K1 × K2 dir.
  • A + B nin C ile bölümünden kalan K1 + K2 dir.
  • A – B nin C ile bölümünden kalan K1 – K2 dir.
  • D × A nın C ile bölümünden kalan D × K1 dir.
  • AE nin C ile bölümünden kalan (K1)E dir.

Yukarıdaki işlemlerde kalan değerler bölenden (C den) büyük ise, tekrar C ile bölünerek kalan bulunur.

D. ÇARPANLAR İLE BÖLÜM

Bir A doğal sayısı B × C ile tam bölünüyorsa A sayısı B ve C doğal sayılarıyla da bölünebilir. Fakat bu ifadenin karşıtı (A sayısı B ile ve C ile tam bölünüyorsa A sayısı B × C ile tam bölünür.) doğru olmayabilir.

  • 144 sayısı 2 × 6 = 12 ile tam bölünür ve 144 sayısı 2 ile ve 6 ile de tam bölünür.
  • 6 sayısı 2 ile ve 6 ile tam bölünür. Fakat 6 sayısı 2 × 6 = 12 ile tam bölünemez.

E. BİR TAM SAYININ TAM BÖLENLERİ

Bir tam sayının, asal çarpanlarının kuvvetlerinin çarpımı biçiminde yazılmasına bu sayının asal çarpanlarının kuvvetleri biçiminde yazılması denir.

a, b, c birbirinden farklı asal sayılar ve m, n, k pozitif tam sayılar olmak üzere,

A = am . bn . ck olsun.

Bu durumda aşağıdakileri söyleyebiliriz:

  • A yı tam bölen asal sayılar a, b, c dir.
  • A sayısının pozitif tam bölenlerinin sayısı,

(m + 1) × (n + 1) × (k + 1) dir.

  • A sayısının pozitif tam bölenlerinin ters işaretlileri de negatif tam bölenidir.
  • A sayısının tam sayı bölenleri sayısı,

    2 × (m + 1) × (n + 1) × (k + 1) dir.

  • A sayısının tam sayı bölenleri toplamı 0 (sıfır) dır.
  • A sayısının pozitif tam bölenlerinin toplamı,

  • A sayısının asal olmayan tam sayı bölenlerinin sayısı, A nın tam sayı bölenlerinin sayısından A nın asal bölenlerinin sayısı çıkarılarak bulunur.
  • A nın asal olmayan tam sayı bölenleri toplamı,

    – (a + b + c) dir.

  • A sayısından küçük A ile aralarında asal olan doğal sayıların sayısı,

  • A sayısının pozitif tam sayı bölenlerinin çarpımı:

 2017 YGS Soruları ve Yorumlar İçin Tıkla

2 yorum yazılmış, sizde hemen aşağıdan yorum yazabilirsiniz "Bölme ve Bölünebilme Konu Anlatımı ve Ders Notları"

  1. aysegül diyor ki:

    33 basamaklı 333…….3333 sayısının 4 ile bölümünden kalan x ,5 ile bölümünden kalan y olduğuna göre x+y toplamı kaçtır tarzı soruların çözümü ?

    • 1.5 yıl diyor ki:

      33 son iki basamagı 4 ile bölümünden kalan 1 olur 4 e bölünebilme kuralına bakabilrisin , 5 e bölümünde son basamağı 3 kalanı da 3. 1+3=4

Yorum Yazın

Yararlı Bağlantılar